
svSite Documentation
Release 0.6

Mark

April 18, 2016

Contents

1 Status 3

2 Resources 5

3 License 7

4 Using 9

5 Extending 15

i

ii

svSite Documentation, Release 0.6

svSite is a project to create reusable website code that is usable for small or medium sized associations. It will be usable
for communication within the organisation, creating and promoting events, displaying news and static information, etc.

Contents 1

svSite Documentation, Release 0.6

2 Contents

CHAPTER 1

Status

Under development; not usable yet. Please stand by for release v1.0!

3

svSite Documentation, Release 0.6

4 Chapter 1. Status

CHAPTER 2

Resources

• Documentation: http://svsite.readthedocs.org/

• Bugs, features: https://github.com/mverleg/svsite/issues

5

http://svsite.readthedocs.org/
https://github.com/mverleg/svsite/issues

svSite Documentation, Release 0.6

6 Chapter 2. Resources

CHAPTER 3

License

The code is available under the BSD License. You can free (and encouraged) to use it as you please, but at your own
risk.

7

svSite Documentation, Release 0.6

8 Chapter 3. License

CHAPTER 4

Using

4.1 Installation

svSite should provide a fully functional site with minimal work.

Although later on you may want to personalize the look (info), which will take time. That’s inevitable.

To get svSite running, follow the steps in the appropriate section.

4.1.1 Linux / bash

Installing dependencies

For this to work, you will need python3-dev including pip and a database (sqlite3 is default and easy, but
slow). Things will be easier and better with virtualenv or pew and git, so probably get those too. You’ll also
need libjpeg-dev and the dev version of Python because of pillow. You can install them with:

sudo apt-get install python3-dev sqlite3 git libjpeg-dev python-pip
sudo apt-get install postgresql libpq-dev # for postgres, only if you want that database
sudo apt-get install mysql-server mysql-client # for mysql, only if you want that database

Get the code. The easiest way is with git, replacing SITENAME:

git clone https://github.com/mverleg/svsite.git SITENAME

Enter the directory (cd SITENAME).

Starting a virtual environment is recommended (but optional), as it keeps this project’s Python packages separate from
those of other projects. If you know how to do this, just do it your way. This is just one of the convenient ways:

sudo pip install -U pew
pew new --python=python3 sv

If you skip this step, everything will be installed system-wide, so you need to prepend sudo before any pip command.
Also make sure you’re installing for Python 3.

Install the necessary Python dependencies through:

pip install -r dev/requires.pip
pip install psycopg2 # for postgres, only if you want that database
pip install mysqlclient # for mysql, only if you want that database

9

svSite Documentation, Release 0.6

Development

If you want to run tests, build the documentation or do anything other than simply running the website, you should
install (otherwise skip it):

pip install -r dev/requires_dev.pip # optional

Database

We need a database. SQLite is used by default, which you could replace now or later (see local settings) for a
substantial performance gain. To create the structure and an administrator, type this and follow the steps:

python3 source/manage.py migrate --settings=base.settings_migration
python3 source/manage.py migrate --settings=settings
python3 source/manage.py createsuperuser

Static files

Then there are static files we need, which are handles by bower by default 1. On Ubuntu, you can install bower using:

sudo apt-get install nodejs
npm install bower

After that, install the static files and connect them:

python3 source/manage.py bower install
python3 source/manage.py collectstatic --noinput

Starting the server

Then you can start the test-server. This is not done with the normal runserver command but with

python3 source/manage.py runsslserver localhost.markv.nl:8443 --settings=base.settings_development

We use this special command to use a secure connection, which is enforced by default. In this test mode, an unsigned
certificate is used, so you might have to add a security exception.

You can replace the url and port. You can stop the server with ctrl+C.

Next time

To (re)start the server later, go to the correct directory and run:

pew workon sv # only if you use virtualenv
python3 source/manage.py runsslserver localhost.markv.nl:8443 --settings=base.settings_development

Note that this is just for development! When the website is going live, you should probably use a webserver such as
Apache.

1 If you don’t want to install node and bower, you can easily download the packages listed in dev/bower/json by hand and put them in env/bower.
Make sure they have a dist subdirectory where the code lives. You still need to run the collectstatic command if you do this.

10 Chapter 4. Using

svSite Documentation, Release 0.6

4.2 Machine-specific settings

Some settings are machine-dependent, so you need to create local.py containing these settings. This file should be
in the same directory as settings.py, so typically source/local.py.

At least, your local settings should contain:

from os.path import dirname, join

BASE_DIR = dirname(dirname(__file__))

SITE_URL = 'svleo.markv.nl' #todo: update url
ALLOWED_HOSTS = [SITE_URL, 'localhost']

SECRET_KEY = '' #todo: generate a long random string

DATABASES = { #todo: choose some database settings
'default': {

'ENGINE': 'django.db.backends.postgresql',
'NAME': 'database',
'USER': 'username',
'PASSWORD': 'PASSWORD',
'HOST': '127.0.0.1',
'CONN_MAX_AGE': 120,

}
}
alternatively, as a deveopment database:
DATABASES = {
"default": {
"ENGINE": "django.db.backends.sqlite3",
"NAME": join(BASE_DIR, 'dev', 'data.sqlite3'),
}
}

MEDIA_ROOT = join('data', 'media', 'svleo')
STATIC_ROOT = join('data', 'static', 'svleo')
CMS_PAGE_MEDIA_PATH = join(MEDIA_ROOT, 'cms')
SV_THEMES_DIR = join(BASE_DIR, 'themes')

You can create a secret key using random.org (join both together), or generate a better one yourself with bash:

</dev/urandom tr -dc '1234567890!@#$%&*--+=__qwertQWERTasdfgASDFGzxcvbZXCVB' | head -c 32

You might also want to have a look at some of these:

SV_DEFAULT_THEME = 'standard'

TIME_ZONE = 'Europe/Amsterdam'
LANGUAGE_CODE = 'nl'
LANGUAGES = (

('nl', ('Dutch')), # using gettext_noop here causes a circular import
('en', ('English')),

)

CACHES = {
'default': {

'BACKEND': 'django.core.cache.backends.memcached.MemcachedCache',
'LOCATION': '127.0.0.1:11211',

}

4.2. Machine-specific settings 11

https://www.random.org/passwords/?num=2&len=16&format=plain&rnd=new

svSite Documentation, Release 0.6

}

You have to redifine TEMPLATES if you want to add a template path or change TEMPLATE_DEBUG

INTERNAL_IPS = [] # these ips are treated differently if a problem occurs

more info: https://docs.djangoproject.com/en/dev/topics/logging/#configuring-logging
LOGGING = {

'version': 1,
'disable_existing_loggers': False,
'handlers': {

'file': {
'level': 'DEBUG',
'class': 'logging.FileHandler',
'filename': '/path/to/django/debug.log', # change this path

},
},
'loggers': {

'django': {
'handlers': ['file'],
'level': 'DEBUG',
'propagate': True,

},
},

}

SESSION_COOKIE_SECURE = CSRF_COOKIE_SECURE = False

DEBUG = FILER_DEBUG = False

You can change other Django settings, particularly it might be worthwhile to have a look at globalization settings.

4.3 Layout

svSite should provide a fully functional site (with minimal work), but you may want to personalize the look, which
will take time. That’s inevitable. Here is some information on how to do it.

4.3.1 Theme requirements

To create your own theme, these are the requirements:

• The files should be organized into directories templates, static and info:

– The templates directory should contain base.html holding the theme body and optionally
head.html holding anything in <head> (you might want to include default_head.html). Ex-
cept for that, it can contain any templates you want (these are only used if you explicitly include them).

– The static directory should contain any static files you use (see below on how to use them).

– The info directory can contain any of these files: readme.rst, description.rst,
credits.rst and license.txt. Other files can be included but nothing special happens with them.

• Include static css/js files using:

{% load addtoblock from sekizai_tags %}
{% addtoblock "css" %}

12 Chapter 4. Using

https://docs.djangoproject.com/en/dev/ref/settings/

svSite Documentation, Release 0.6

<link rel="stylesheet" href="{% static THEME_PREFIX|add:'/css/style.css' %}">
{% endaddtoblock "css" %}

and other static files:

{% load static from staticfiles %}

You can also hard-code {% static ’theme_name/logo.png’ %}. This behaves differently in case
another theme extends this one.

• For the base.html template:

– It should not extend anything (it is itself included).

– It should define precisely these placeholders:

{% placeholder "header" %}
{% placeholder "top-row" %}
{% placeholder "content" %}
{% placeholder "sidebar" %}
{% placeholder "bottom-row" %}

– It should {% include include_page %} if it’s set, e.g. a structure like this:

{% if page_include %}
{% include page_include %}

{% else %}
{% placeholder "content" %}

{% endif %}

– You do not need to define {% block %} . You won’t be able to extend them since Django doesn’t let
you extend blocks from included templates.

4.3. Layout 13

svSite Documentation, Release 0.6

14 Chapter 4. Using

CHAPTER 5

Extending

5.1 Contribute

Say you want to make some changes. Perhaps they turn out great, and you want to share them. That is greatly
appreciated, and this page tells you how to do it!

5.1.1 Linux / bash

You will need to make sure you can push code to Github by setting up ssh keys. Then fork the svsite repository and
follow these steps.

You will need python3, pip, a database (sqlite3 is default and easy, but slow), virtualenv, git,
elasticsearch and some SSL packages. Just type:

sudo apt-get install python3 sqlite3 python-virtualenv git build-essential libssl-dev libffi-dev python-dev elasticsearch

Get your copy of the svsite code:

git clone git@github.com:YOUR_SVSITE_FORK.git

Go to the directory, start a virtualenv and install:

virtualenv -p python3 env
source env/bin/activate
pip install --requirement dev/pip_freeze.txt
pip install --no-deps --editable .

To create the database and superuser:

python3 source/manage.py migrate
python3 source/manage.py createsuperuser

You might want to run the tests:

py.test tests

Then you can start the server on localhost:

python3 source/manage.py runserver_plus --cert dev/cert

You can now open the site in a browser. It is running on localhost over https on port 8000. The server prepends www,
so use a domain that works with that prefix. For example,

https://www.localhost.markv.nl:8000/

15

https://help.github.com/articles/generating-ssh-keys/
https://www.localhost.markv.nl:8000/

svSite Documentation, Release 0.6

This refers to your localhost (127.0.0.1). The first time you will probably need to add a security exception, as this is a
debug SSL certificate.

Now you are ready to make your chances!

After you are done and have tested your changes (and converted space-indents to tabs), you can suggest it for inclusion
into svsite by means of a pull request

5.1.2 External services

There is a minimal api for building some external services, which is described in integration_api.

5.1.3 A general note

Good luck! why-we-never-forget-our-fellow-coders_

5.2 Models

The models and their relations can be seen in this graph:

With graphviz and django-extensions you can generate this image yourself:

python source/manage.py graph_models --all --settings=base.settings_development | grep -v '^ //' | grep -v '^[[:space:]]*$$' > images/models.dot

5.3 Design notes (hacks)

Some parts are less than elegant. Although, at the time of writing, it seems there may not be a better way, it warrants
a warning anyway.

5.3.1 Migrating

Clean migrations don’t quite work for some cms addons. Find the migration info in the installation documentation.

5.3.2 Themes

Djangocms seems not designed to handle dynamic templates, so a fixed template is used that dynamically includes the
theme template based on a context variable.

Since djangocms uses sekizai, which must have it’s render_block be in the top template, it is necessary to have the
<head> and <body> in this top template, and to include only the rest of the content of these tags.

Furthermore, the CMS does some kind of pre-render without context to find the placeholders to be filled. This means
placeholders cannot depend on the theme (=context). Placeholders are defined in default_body.html and themes
should match those.

16 Chapter 5. Extending

https://help.github.com/articles/creating-a-pull-request/

svSite Documentation, Release 0.6

5.3.3 Special pages

This relates to those pages (e.g. search results) that should not be plugins in the CMS, but should be integrated into it
anyway (to be in the menu, be moved and allow placeholders).

What I would have preferred to do would be to have such pages (as apphooks) extend the main template and over-
write {% block content %}. However, because of themes, {% block content %} is necessarily defined
in an {% include %} file. Django cannot extend blocks defined in included files (regrettably) since they are each
rendered separately (not so much ‘included’), making the block useless.

The ‘solution’ used is to force templates to include a dynamic template instead of the content placeholder for such
pages.

{% if page_include %}
{% include page_include %}

{% else %}
{% placeholder "content" %}

{% endif %}

There is a special version of render, namely base.render_cms_special, that you can use like this:

def my_view(request):
value = 'do some query or something'
return render_cms_special(request, 'my_template.html', dict(

key=value,
))

It is important to note that my_template.html in this example should render just the content part, not the full
page. Don’t {% extend %} the base template (or anything, for that matter); this is done automatically.

In order for placeholderes to show up and for things to be integrated into the cms, you will need to add this view/app
as an app-hook (this is the normal way; the only difference is that you should use render_cms_special).

5.3.4 Users & groups

#todo - build-in Django groups - CMS users

5.3. Design notes (hacks) 17

http://docs.django-cms.org/en/develop/how_to/apphooks.html

	Status
	Resources
	License
	Using
	Extending

